A NOVEL HYBRID MOTION ESTIMATOR
SUPPORTING DIAMOND SEARCH AND FAST FULL SEARCH

Wei-Min Chao, Chih-Wei Hsu, Yung-Chi Chang, and Liang-Gee Chen

DSP/IC Design Lab,
Department of Electrical Engineering, National Taiwan University
Email: {hydra, jeromn, watchman, lgchen}@video.ee.ntu.edu.tw

ABSTRACT

In this paper, we present a novel hardware architecture
supporting diamond search and fast full search for block
matching motion estimation. It can handle irregular data flow of
these fast algorithms without pipeline bubbles, and reduce
computation of duplicated search positions. The proposed
architecture needs preprocessing with small amount of
computational power while performing fast full search and is
suitable for the platform-based video coding system. While the
diamond search mode can be applied for real-time requirements,
we can choose the fast full search mode, which adapts
processing cycles to picture contents and preserves the same
quality of FSBM, for applications of high picture quality or
compression ratio. It needs only 9K gates and one additional
memory of search range size and is more cost-effective than the
conventional systolic array architecture.

1. INTRODUCTION

Motion estimation is the key technique of video coding and
can reduce the temporal redundancies of sequences to make
compression efficient. In all algorithms of motion estimation,
full search block matching (FSBM) algorithm is well known and
commonly used in the video coding system because of its good
performance and regularity. But due to its high computational
power, dedicated hardware is usually employed. To meet real-
time requirements, the systolic array architecture is widely
adopted for FSBM and it needs large number of processing
elements for parallel processing.

Recently many fast algorithms are proposed to speed up
FSBM and preserve the same result. It is separated into two
categories and called fast full search (FFS). One is the
successively elimination algorithm (SEA) [1]{2] and the other
one is partial distortion elimination (PDE) [3][4]. The SEA uses
the triangle inequality to eliminate useless search positions
before calculating the sum of absolute difference (SAD). The
PDE stops calculating SAD if the accumulating value is larger
than the current minimum SAD. These algorithms can reduces
80% computational power of original FSMA but it also
introduces irregular data flow and the computational complexity
is still too large. Diamond search (DS) [5] has been proven to
have sub-optimized result and just have 1.56% computational
power compared to FSBM. For MPEG-4 series or H.263 series

0-7803-7448-7/02/$17.00 ©2002 IEEE

DS is a good choice to satisfy real-time applications and retains
acceptable image quality at affordable cost. Due to its irregular
data flow, it is also not suitable implemented by the systolic
array architecture.

We proposed a new hardware architecture supporting DS and
FFS dynamically for applications with different purposes. For
real-time applications we choose the diamond search mode. For
applications with the requirement of high picture quality we
choose the fast full search mode and it can achieve the same
processing power with the systolic array architecture of 64PEs.

The organization of this paper is as follows. In section 2, we
review the algorithms adopted for hardware implementation. In
section 3, the computationally adaptive motion estimator is
presented. In section 4 the experiment results and discussions are
represented. Finally, section 5 concludes this paper.

2. HARDWARE CONSIDERATIONS OF DS AND FFS
2.1 Architecture for irregular search positions

The irregular search positions of DS and FFS make it difficult
to map into the systolic array architecture and therefore we use
the tree architecture {6] and the interleaved memory organization
to support random access according to search positions. The first
advantage of this scheme is that it won’t generate some pipeline
bubbles after skipping some search positions. The second is that
the bit-width of the adder-tree matches the inputs and is not the
worse case as the systolic array. Therefore, the architecture is
suitable for these fast algorithms with irregular data-flow and
more cost-effective than the systolic array.

2.2 Skip duplicated search positions of DS

While performing DS, each SAD of the search positions
in the current diamond patterns should be calculated and
find the minimum one as the center of the next diamond
pattern. There are four duplicated search positions for
horizontal or vertical moving cases and three duplicated
search positions for diagonal moving cases as shown in
Figure 1. The SAD of these duplicated positions
calculated in the current diamond pattern can be avoided
in the next diamond pattern. For hardware implementation
it costs a lot to store all these duplicated information while
diamond patterns moves. We proposed the ROM-based
solution to efficiently skip the duplicated positions among

II-492

TTITT T
P2y | _E

I {
[l IHEEN
o

Skipping Rate of PDE
2
.
'
'
‘
[y
Skipping Rate of SEA
2 3
.
.
.
¢
.
=2
g8
i

£
.

]
I
I
2

Figure 1. (a) Diagonally duplicated positions
(b) Horizontally duplicated positions

Table 1. Skipping methods for foreman sequence
in the CIF format of 30fps at 512Kbps

8
g

a
]

[
13314367 E S WN TN

Truncation Bits

R
Trancation Bits

Figure 2. Skipping rate of SEA and PDE after truncating

G

successively moving patterns. For example in Figure 1(b)
we suppose that the position 2 has the minimum SAD in the
diamond pattern of the positions 1-9 and therefore not only the
coordinate (u,v) of the position 2 but also the location (id)
against the diamond pattern should be stored. Then in the next
diamond pattern of nine locations (1-4 and A-E) this information
is used to look up the table and choose valid ones (A-E). The
table contains only eight cases due to eight locations of a

diamond pattern except the center one and therefore is very small.

Although it can’t avoid all situations that the locations duplicate
after two more moving of diamond patterns, it seldom occurs
and is smaller than 0.3%. In Table 1 we use the ROM-based
method and 24.23% of search positions is skipped with only a
little of hardware overhead.

2.3 Computation reduction by the SEA and PDE methods

While performing FFS, the SEA and PDE methods avoid large
useless computations but also cause irregular data flow and some
hardware cost for calculating SEA criteria. The first problem can
be solved by the tree architecture. For the second one the
calculation of the SEA criteria is divided into hardware and
software parts and it is suitable for platform-based video coding
system.

Let C(x,y) is the pixel intensity of coordinate (x,y) in the
current MB and R(u+x,v+y) is the pixel intensity of coordinate
(u+x,v+y) in the search window where the coordinate (u,v)
means the search position. From inequality of (1), it guarantees
that SAD(u,v) is larger than the current minimum SAD if [SUM-
SEA(u,v)| is larger than that. Therefore this criteria is used to
decide whether to skip the search position (u,v) and avoid
useless computations afterwards. SUM of (2) is the sum of pixels
in the current MB and will be calculated once. SEA(u,v) of (3) is
the sum of pixels in the candidate MB(u,v) and can be separated
into horizontal calculation and then vertical calculation of (4) at
the frame level. For sequences of CIF at 30 fps, the operations
are only 24.3 MIPS and the data bandwidth is 12.16 Mbytes per
second. Due to the features for calculating SEA criteria and
affordable computation the processor is a good choice to do this
task. Therefore, we suppose that it can be calculated by the

processor platform first and transferred into the motion estimator.

The penalty of this scheme is that we need an additional memory

Methods for Candidates | Skipping Hardware
duplicated positions per frame ratio overhead
No skipping 8857 0 No
Skipping all duplicated o RAM of search
positions 6693 2443% range size foioed
o, | ROM (8 cases) 4- Elinsination
ROM-based 6711 24.23% bits registers

Patiern Generation FEFO

Distortion Calculation

Figure 3. Architecture of hybrid motion estimator

54D = S S| - Rex +,y+ v} 2 SUM = SEAu Y W
x30 y=!
SUM = fgC(x, » @)
_e .
SEA(u,v}=Y. 3 R(u+x,v+y) 3)
=

SEAH (u,v) = SEAH (u-1,v)- R(u-1,v) + R(u—1+ N,v),SEAH (0,v) = ER(:‘, v)
=0

SEA(u,v) = SEA(u,v~ 1)~ SEAH(u,v~ 1)+ SEAH (u,v =1+ N), SEA(u.0) = fsuﬁ(u,.)
SAD(u,v) 2|(SUM ~ NO) ~(SEAu,v) - N1)~ (N1~ NO), = |SUM~SEA (u,v) - (N1 - NO)

0SNO,N1S2F
SAD(u,v) 2 [SUM *-SEA*(u,v)| - 2 6)

)

of frame size in external RAM and an additional SEA memory of
search range size in our architecture. To balance the performance
of SEA and hardware cost, the least significant k bits of SEA(u,v)
and SUM are truncated into SEA’ and SUM’ in (5). To
guarantee the same result of FSBM, the absolute difference of
SUM’ and SEA’ is subtracted by 2X further in (6). From our
simulation results in Figure 2, we choose the upper 8 bits of U
and V for saving half size of SEA memory and it only drops 5%
of the SEA skipping rate.

Besides, if the smaller minimum SAD of the candidate MBs
can be found earlier, more useless computations can be avoided.
A good initial guess is required to find the minimum SAD earlier
and it not only improves the skipping ratio of SEA but also that
of PDE. From the assumption that the motion vectors (MVs) of
the neighbor MBs can usually be used to predict the MV of the
current MB correctly and there is a high probability that MVs
are closer to zero motion, the predictor is chosen as the first
search position and others are generated in the spiral order from
the origin of the search window [6).

3. HARDWARE ARCHITECTURE

3.1. Overview of the hybrid motion estimator

11 - 493

Figure 3 depicts the proposed hardware architecture of hybrid
motion estimator supporting DS and FFS. This architecture
mainly includes three processing stages and three buffers to store
current MB, the search window and SEA criteria. Before
performing motion estimation, the video coding system transfers
data from external memory into these three buffers and the adder
tree accumulates the sum of the pixels in the current MB and
saves it in the SEA decision module meanwhile. To speed up the
data loading, the search window buffer and the SEA buffer can
be loaded using column-by-column data-reuse scheme [8]. After
starting the motion estimation, the pattern generation (PG) stage
generates the valid candidate positions. Then these positions are
passed through the FIFO stage and fetched by the distortion
calculation (DC) stage. The DC stage is responsible for
calculating SAD of candidate positions and finds the minimum
one. In the following sections we describe the detailed flows of
these stages.

3.2 Pattern generation stage

While performing DS, this stage uses the ROM-based diamond
pattern to generate valid search positions. After SAD of all
search positions in the current diamond pattern are calculated,
the controller feedbacks the id information of the minimum one
to decide the center of the next diamond pattern and valid search
positions.

While performing FFS, this stage generates search positions in
the spiral scan order in Figure 4 and then uses SEA criteria pre-
calculated by processor to filter useless positions off. In the
following we describe how to generate the spiral pattern by
hardware implementation. Suppose that the coordinate (u,v) is
the start point of spiral pattern, Gy is the set of (k,k), N is the
sequence of {G,,G,,G3,Ga,...}={1,1,2,2,3,3,4,4,...}, and n is the
number following the element of the sequence N. Observing the
regularity of the spiral pattern, it outputs n positions at the same
direction and then turns to another direction. While k is the odd
number, decrement u (v) if the current position is located in the
first (second) part of G. While k is the even number, increment u
(v) if the position is located in the first (second) part of G.
Following this rule, we can generate the spiral pattern by using
two counters, two comparators, two adders, and a simple state
machine. Besides the good initial guess for finding the smaller
SAD carlier, the other advantage is that the search range can be
changed dynamically depending on the features of the sequences
by controlling the counters.

3.3 Distortion calculation stage

This stage calculates the distortion between the current block
and the candidate block of the specified position. Due to
irregular candidate positions from the previous stage, the adder-
tree structure and the interleaved memory organization in Figure
5 and 6 are used. From reasonable point of view, 64 bits width of
eight banks memory are adopted and it can process eight pixels
per cycle. To support block size of 8x8 and 16x16 and remain
the same controlling scheme, the order of SAD calculation is
shown in Figure 7. While computing partial distortion of eight
pixels, the ACE module accumulates it for the SAD of the
current position, compares it with the current minimum one, and
eliminates this position if it is larger than that. If the process
continues for the last cycle of SAD calculation, the current

Radaad
RERRRN

Figure 4. Spiral pattern of dynamic range

AO& AL

1
2 |z
—(’—‘al)—.m_,% B2 0
MUXlaLS‘_

Dataln ———

MUX2 2 |2
_I ey MUX?
e | L —e 3]:‘ _

—ReadiE 15 Mem0 [Mem! }-. Mem2 [—— — Mem?
L Raotate Shifter I
FFFEFEFFT

Figure 5. Interleaved memory organization of
the search range RAM

Figure 6. (a) Adder tree with suitable bit width
(b) Systolic Array with the worse case bit width

7 > FEIR] Hatf-row (eight pixels) per cycle

r/ The region for SAD caiculation of
£} a block

The region for SAD caloulation of
amB

Figure 7. Scan order for SAD calculation

minimum SAD will be replaced with this one. By this PDE
method, the processing cycles of the distortion calculation
decrease further.

3.4 FIFO stage

The PG stage processes one position per cycle and decides
whether it should be filtered off or not. The DC stage processes
one position less than 32 cycles for a MB or 8 cycles for a block.
At most time the PG stage waits for DC stage and the hardware
utilization is poor. A FIFO is inserted between the PG stage and
the DC stage to improve the hardware utilization. The PG stage
will stop only when the FIFO is full. It will improve more if the
FIFO has more elements, but the hardware cost will increase at
the same time. From our simulation we adopt the FIFO of five
elements and improve 5% performance.

4. EXPERIMENT RESULTS AND DISCUSSION

In Table 2 we simulate three modes of our motion estimator on
five different sequences. The sequences are in the CIF (352x288)

II - 494

format and each of them contains 300 frames. The search range
is -16 to 15 along both axes. The first mode performs FFS and
guarantees the same results with FSBM. The second mode also
performs the fast full search but it stops before or at 4208 cycles
for each MB to meet the real-time requirements. By using this
scheme of ‘cycle-cut’ at 4208, it guarantees to complete in 4208
cycles (2879 cycles on the average) and PSNR only drops
0.0106 dB on the average and drops 0.981 dB in the worst case.
The third mode performs the DS and it needs only one-tenth
cycles of the fast full search mode and the PSNR drops 0.7194
dB on the average.

The SEA criteria provide the measurement of how much
computational power to perform SAD calculation. In Table 2, a
lot of positions will be excluded by SEA criteria in the case of
small motion or detailed texture of sequences, and therefore it
only consumes lesser cycles for valid search positions. If the
motion of video sequences is fast or texture of pictures is similar,
the skipping rate of SEA will decrease and it will consume more
cycles to perform fast full search. In the latter case, all SAD in
the search range will be almost the same and therefore it has
better compression ratio to choose the MV with smaller SAD
closer to the zero motion rather than the MV with minimum one.
So we use the simple cycle-cut method and guarantee to
complete the motion estimation at or before the specified time.

Our motion estimator targets for sequences in the CIF format
at 30 fps and the search range is —~16~15. While working at
S50MHz it costs 9K gates and 28Kbits memory. For real-time
applications, motion estimation should complete in 4208 cycles

for a MB on the average and in 1666K cycles for a frame at most.

Compared to the 1-D systolic array architecture with 64 PEs,
which costs 60K gates to provide the same computational power,
only one-sixth gates and more 8K bits memory are required in
the proposed design. Preprocessing for the SEA criteria can be
achieved by the processor when the proposed motion estimator is
integrated with the platform-based video coding system.

5. CONCLUSION

In this paper a new hybrid motion estimator supporting
diamond search and fast full search is proposed. In the DS mode,

it only takes 173.2K cycles for a P-frame of CIF format and can
meet real-time requirements while working at 6 MHz. For the
FFS mode, it dynamically adjusts the processing cycles to the
picture contents and takes almost the same amount of cycles with
64PEs 1-D systolic array architecture. With the cycle-cut method,
the motion estimation is completed within 4208 cycles while the
PSNR drops only 0.0106 dB. The SEA criteria can be calculated
recursively by the processor platform and it takes about 24.3
MIPS for CIF 30 fps. The future work is integration with a
complete MPEG+4 video encoding system.

6. REFERENCES

[1] W. Li and E. Salari, “Successive elimination algorithm for
motion estimation,” IEEE Trans. on Image Processing, vol. 4,
No.1, pp. 105-107. Jan. 1995.

[2] X.Q. Gao, C.J. Duanmu, and C.R. Zou, A multilevel
successive elimination algorithm for block matching motion
estimation,” IEEE Trans. Image Processing, vol. 9, No.3,
pp.501-504. March 2000.

[3] S. Eckart and C. Fogg, “ISO/IEC MPEG-2 software video
codec.” Proc. SPIE, vol. 2419, pp. 100-118, 1995.

[4] J.N. Kim, and et al., “A fast motion estimation for software
based real-time video coding,” IEEE Trans. Consumer
Electronics, vol. 45, No. 2, pp. 417-426, May 1999.

[5] S. Zhu and K.K. Ma, “A new diamond search algorithm for
fast block-matching motion estimation,” IEEE Trans. Image
Processing, vol. 9, No. 2, pp. 287-290, Feb. 2000.

[6] Jens-R. Ohm,”Digitale Bildcodierung: Repraesentation,
Kompression und Ubertragung von Bildsignalen,” Springer
Verlag, pp.303-316. 1995.

[7] Y.S. Jehng, L.G. Chen, and T.D. Chiueh,“An efficient and
simple VLSI tree architecture for motion estimation algorithms,”
IEEE Trans. Signal Processing, vol. 41, No. 2, pp.889-900, Feb.
1993.

{8] M.Y. Hsu, H.C. Chang, and L.G. Chen, “Scalable module-
based architecture for MPEG-4 BMA motion estimation,” IEEE
ISCAS, vol. 2, pp.245-248, 2001.

Table 2. Various modes for different sequences of CIF 30fps at 256Kbps with search range -16~15

FFS mode FFS mode with cycle-cut at 4208 DS mode

Seaenee PSNR-Y | U e [PSNRY | Tiop | v game |PSNRY | T | e
Max 36.000, 17531 36.017 0.316 1158] 35.784] 0.314 195
Weather Min 26.361 574 26.361 -0.585 563 26.361 -0.551 109
Average 33.545) 777 33.555 -0.0104 703 33.231 0.314 126]
Max 34.054] 3362(34.083 0.981 1529 33.849 2.480¢ 225
Foreman Min 29.717] 1299 29.299 -0.377 940 29.434) -0.301 180
Average 32.529 1813] 32.516] 0.013] 1159] 31.797, 0.732 194]
Max 36.359 1908 36.431 0.628 1139] 36.236, 0.906] 204
Hall Min 32.167 1337] 32.167 -0.528 913 32.167 -0.301 151
Average 35.690 1415f 35.750 -0.060 940] 35.490] 0.200, 161
Max 34.832] 6320 34.855 0.565 1579 34.275 6.665 299
Table Tennis] Min 27.399 2139} 27.526] -0.292 1231] 26.805! 0.00 156
Average 31.950 3743f 31.935 0.016 1405 29.803] 2.147 198
Max 30.728 5144] 30.699 0.378 15831 30.657, 0.923 300
Coastguard Min 26.294 2990} 26.299] -0.325 1416] 26.263 -0.196 152
Average 28.554) 3909 28.527 0.027] 1494) 28.304] 0.249 187

II-

495

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

